十字相乘法是一种简便的乘法运算方法,常用于计算两个多项式相乘的结果。在使用这种方法时,我们需要判断一些数的正负性,以保证最后得到的结果是正确的。
首先,我们来看一下十字相乘法的计算步骤。以计算多项式 $(2x+3)(x-4)$ 为例,步骤如下:
1. 将两个多项式的各项系数分别写在一个表格中,如下所示:
| | 2x | 3 |
|:-:|:-:|:-:|
| x-4 | | |
2. 从左上角开始,将第一个多项式的每一项依次与第二个多项式的每一项相乘,并将结果填入表格中对应的位置。如下所示:
| | 2x | 3 |
|:-:|:-:|:-:|
| x-4 | 2x^2 | 3x |
| | -8x | -12 |
3. 将表格中每一列的数相加,得到最终结果。如下所示:
$$(2x+3)(x-4)=2x^2-8x+3x-12=2x^2-5x-12$$
从上面的计算过程中,我们可以看出,判断正负性的关键在于第二步中填表格的过程。具体来说,我们需要注意以下几点:
1. 两个正数相乘得到的结果也是正数。
2. 两个负数相乘得到的结果也是正数。
3. 一个正数和一个负数相乘得到的结果是负数。
因此,我们可以根据这些规律来判断十字相乘法中填表格时每个位置上的数的正负性。以计算 $(2x+3)(x-4)$ 为例,我们可以按照以下步骤来填表格:
http://jsq.easiu.com/common/images/14365803917260389.jpg
1. 第一行第一列的数是 $2x$,是正数。
2. 第一行第二列的数是 $3$,也是正数。
3. 第二行第一列的数是 $x-4$,其中 $x$ 是正数,$-4$ 是负数,因此整个括号是一个负数。
4. 第二行第二列的数没有写入任何数,因为这一列不会影响最终结果。
根据上述填表格的过程,我们可以得到:$2x^2-8x+3x-12$。其中,$2x^2$ 是正数,$-8x$ 和 $3x$ 是相反的数,因此最后结果是一个负数。具体来说,$2x^2-5x-12$ 的系数 $2$ 是正数,系数 $-5$ 是负数,系数 $-12$ 也是负数。
在实际应用中,我们需要综合考虑多种情况,以确保得到的结果是正确的。同时,我们也可以通过多练习来提高判断正负的能力,从而更加熟练地使用十字相乘法。
杭州松下微波炉维修
洗衣机甩干撞击侧面
空调温控探头阻值多少
洗衣机机盖磁铁
康佳led55x1200AF通病
开机启动后自动关机
万家乐热水器防冻阀使用方法
彩电160v电容没来电压
创维34t66aa进总线方法
热水器没热水出来
烟台空调售后那个好
数字电视机顶盒没信号
液晶电视没有声音修理
日立电视机故障维修大全
海尔商用冷水机维修
先锋电风扇湖北维修点
有线电视机电路图
江阴三菱空调售后维修
石家庄格力空调招聘最新信息
空调加氟顶针漏气